Retirement Gains:

Example:

<u>Plan Provisions:</u>

Retirement benefit:	2% of final earnings per year of credited service
Normal form of payment:	Life Only, payable monthly in advance
Normal retirement age:	Age 65
Unreduced retirement age:	Age 62
Early retirement reduction:	4% for each year prior to unreduced retirement age
Termination benefit:	Deferred pension payable at age 65, or actuarial equivalent if received earlier
Pre-retirement death	Actuarial present value of deferred pension
benefit:	payable from when the member would have attained age 65

Actuarial Assumptions and Methods:

Interest rate:	5% per year
Salary increase rate:	3% per year
Actuarial cost method:	Projected Unit Credit, prorated on service
Pre-retirement mortality:	None
Termination rates:	10% at age 50
Retirement rates:	See table below
Timing of decrements:	Beginning of year
-	

Retirement Rates:

Annuity Factors:

Age	Retirement
55	25%
62	50%
65	100%

$\ddot{a}_{50}^{(12)}$	16.7
$\ddot{a}_{55}^{(12)}$	15.8
$\ddot{a}_{62}^{(12)}$	14.2
$\ddot{a}_{65}^{(12)}$	13.3

Member Data as at December 31, 2017:

	Member A	Member B
Age	50	61
Earnings for 2017	\$80,000	\$100,000
Credited Service	10 years	14 years

(a) Calculate the accrued liability and normal cost at December 31, 2017 for each member.

Show all work.

You are given:

- Member A receives a salary increase of 7% at December 31, 2018.
- Member B died on December 31, 2018. As of December 31, 2018, the death benefit has not been paid.
- (b) Calculate the accrued liability at December 31, 2018 for each member.

Show all work.

(c) Calculate the gains and losses by source for 2018.

Solution:

(a)

Member A AL at Dec. 31, 2017 = AL (term 50) + AL (ret 55) + AL (ret 62) + AL (ret 65) = <u>\$162,135</u> $0.10 \times 2\% \times \$80,000 \times 10 \times 13.3 \times (1.05)^{-(65-50)} = \$10,236$ AL (term 50) = AL (ret 55) = $0.90 \times 0.25 \times 2\% \times \$80,000 \times (1.03)^{(55-50)} \times 10 \times 15.8 \times (1.05)^{-(55-50)}$ x [1 - 0.04 x (62 - 55)] = \$37,199AL (ret 62) = $0.90 \ge 0.75 \ge 0.5 \ge 2\% \ge 80,000 \ge (1.03)^{(62-50)} \ge 10 \ge 14.2 \ge (1.05)^{-(62-50)}$ = \$60,878 AL (ret 65) = $0.90 \times 0.75 \times 0.5 \times 2\% \times \$80,000 \times (1.03)^{(65-50)} \times 10 \times 13.3 \times (1.05)^{-(65-50)}$ = \$53,823 NC at Dec. 31, 2017 = NC (term 50) + NC (ret 55) + NC (ret 62) + NC (ret 65) = **\$15.190** NC (term 50) = \$0 NC (ret 55) = $0.90 \times 0.25 \times 2\% \times \$80,000 \times (1.03)^{(55-50)} \times 1 \times 15.8 \times (1.05)^{-(55-50)}$ x [1 - 0.04 x (62 - 55)] = \$3,720NC (ret 62) = $0.90 \times 0.75 \times 0.5 \times 2\% \times \$80,000 \times (1.03)^{(62-50)} \times 1 \times 14.2 \times (1.05)^{-(62-50)}$ = \$6,088 NC (ret 65) = $0.90 \times 0.75 \times 0.5 \times 2\% \times \$80,000 \times (1.03)^{(65-50)} \times 1 \times 13.3 \times (1.05)^{-(65-50)}$ = \$5,382 Member B AL at Dec. 31, 2017 = AL (ret 62) + AL (ret 65) =<u>\$367,427</u> AL (ret 62) = $0.5 \times 2\% \times (1.03)^{(62-61)} \times \$100.000 \times 14 \times 14.2 \times (1.05)^{-(62-61)} = \195.013 AL (ret 65) = $0.5 \times 2\% \times \$100,000 \times (1.03)^{(65-61)} \times 14 \times 13.3 \times (1.05)^{-(65-61)} = \$172,414$ NC at Dec. 31, 2017 = NC (ret 62) + NC (ret 65) =<u>\$26,245</u> NC (ret 62) = $0.5 \times 2\% \times (1.03)^{(62-61)} \times 100,000 \times 1 \times 14.2 \times (1.05)^{-(62-61)} = 13,930$ NC (ret 65) = $0.5 \times 2\% \times \$100,000 \times (1.03)^{(65-61)} \times 1 \times 13.3 \times (1.05)^{-(65-61)} = \$12,315$

Alternate solution: Since there is no assumed decrement in the beginning of the first year, then use the formula AL at Dec. 31, 2017 / Credited Service at Dec. 31, 2017 = $367,427 / 14 = \frac{26,245}{2}$

(b)

 $\frac{\text{Member A (Age 51)}}{\text{Earning 2018}} = \$80,000 * 1.07 = \$85,600$ AL at Dec. 31, 2018 = AL (ret 55) + AL (ret 62) + AL (ret 65) = **\$202,508**AL (ret 55) = $0.25x2\% x \$85,600 x (1.03)^{(55-51)} x 11 x 15.8 x (1.05)^{-(55-51)} x [1-0.04 x (62-55)] = \$49,593$ AL (ret 62) = $0.75 x 0.5 x 2\% x \$85,600 x (1.03)^{(62-51)} x 11 x 14.2 x (1.05)^{-(62-51)} = \$81,160$ AL (ret 65) = $0.75 x 0.5 x 2\% x \$85,600 x (1.03)^{(65-51)} x 11 x 13.3 x (1.05)^{-(65-51)} = \$71,755$ $\frac{\text{Member B (Age 62)}}{\text{Earning 2018} = \$100,000 * 1.03 = 103,000}$ AL at Dec. 31, 2018 (death benefit) = $2\% x \$103,000 x 15 x 13.3 x (1.05)^{-(65-62)} = \$355,011$